class: center, middle # EE-361 ELECTROMECHANICAL ENERGY CONVERSION ## Ozan Keysan [http://keysan.me](http://ozan.keysan.me) Office: C-113
•
Tel: 210 7586 --- # Why do we need AC?
## [War of Currents](http://en.wikipedia.org/wiki/War_of_Currents) --- # Alternating-Current Grid ## - Transformers can be used to step-up voltage ## - Thinner/Cheaper transmission cables ## - Energy can be transferred to long distances ## - More Efficient (Including the extra power loss of the transformer) --- # Why do we need AC?
--- # Not only in Power Engineering ## Sinusoids exists in: ### - Nature: Waves, Motion... ### - Mechanical Engineering: Vibration, [Natural frequency](http://www.youtube.com/watch?v=j-zczJXSxnw) ### - Computer Science: File Compression, Image Processing, [Fourier Transform](http://jackschaedler.github.io/circles-sines-signals/dft_introduction.html) ([mp3](http://nautil.us/blog/the-math-trick-behind-mp3s-jpegs-and-homer-simpsons-face), [jpeg](http://david.li/filtering/)) --- # Sinusoid ## Sinusoid: Signal that has the form of the sine or cosine function. ## \\( V(t) = V\_{max} sin (\omega t) \\) #### or ## \\( V(t) = V\_{max} cos (\omega t) \\) --- # \\( V(t) = V\_{max} sin (\omega t) \\) ## \\( V\_{max}\\) : Amplitude ## \\( \omega\\) : Angular velocity (radians/second) ## \\( t \\) : Time (seconds) -- ## \\(f\\): Frequency in Hertz (Hz) ## \\(\omega = 2 \pi f\\): Frequency radians/s --- # Phase Difference: \\( V(t) = V\_{max} sin (\omega t + \phi) \\) -- ## \\(\phi\\): Phase (radians)
--- # Can you answer the following? -- ## \\( cos (\omega t - \pi)\\) = -- \\( - cos (\omega t) \\) -- ## \\( cos (\omega t - \pi /2)\\) = -- \\( sin (\omega t) \\) -- ## \\( sin (\omega t + \pi /2)\\) = -- \\( cos (\omega t) \\) --- # Phase Difference
--- # What about sinusoid operations? ## \\(3 cos (\omega t) + 4 sin (\omega t) = ?\\) -- ## \\(A cos (\omega t) + B sin (\omega t + \phi) = ?\\) ### [Graphical representation](https://www.desmos.com/calculator/yjdj9jyqpc) --- #Phasors ## Phasor: a complex number that represents the amplitude and phase of a sinusoid -- ## \\(z = x + j y\\) ###where \\(j = \sqrt{-1}\\) --- # Complex Numbers ## \\(j = \sqrt{-1}\\) or better expressed as: \\(j \times j = -1\\)
[Better explained: complex numbers](http://betterexplained.com/articles/a-visual-intuitive-guide-to-imaginary-numbers/) --- #Phasors ## In polar form ##\\(z = x + j y = r \angle \phi\\) -- ##where ##\\(r = \sqrt{x^2 + y^2}\\) ## \\(\phi = tan^{-1}(\dfrac{y}{x})\\) --- #Phasors ## In polar form ##\\(z = x + j y = r \angle \phi\\) ###or ##\\(z = r ( cos (\phi) + j sin (\phi)) \\) --- # Phasors ## Remember phasors are there to make your life EASIER! -- ## Derivation in phasor domain? -- ## \\(i(t)= cos (wt + \phi)\\) -- ## \\(\dfrac{d i(t)}{dt}=?\\) -- ## In Phasor domain: \\(j \omega \\) ( i.e rotation by 90 degrees!) --- #Phasor Circuit Analysis: Inductor # Time Domain: \\(v = L \dfrac{di}{dt}\\) -- # Phasor Domain: \\(\mathrm{V} = j \omega L \mathrm{I}\\) --- #Phasor Circuit Analysis: Inductor
--- #Phasor Circuit Analysis: Inductor
## Inductor current lags inductor voltage 90 degrees --- ## Phasor Circuit Analysis: Capacitor
### Time Domain: \\(i = C \dfrac{dv}{dt}\\) -- ### Phasor Domain: \\( \quad \mathrm{V} = \dfrac{1}{j\omega C} \mathrm{I}\\) --- ## Phasor Circuit Analysis: Capacitor
## Capacitor current leads capacitor voltage 90 degrees --- #Impedance #### Impedance is the equivalent of resistance in phasor domain -- ### \\(Z = \dfrac{V}{I} \quad\quad V = ZI\\) -- ## Resistor: \\(R\\) -- ## Inductor: \\(j \omega L\\) -- ## Capacitor: \\(\dfrac{1}{j \omega C}\\) --- # Impedance ## How do you combine a resistor and inductor? -- ## \\(Z\_{eq}=Z\_1 + Z\_2 \\) -- ## \\(Z\_{eq}= R + j \omega L \\) -- ## \\(Z\_{eq}= R + j X = |Z| \angle \theta \\) --- # What is the magnitude of grid voltage?
--- # Low-Voltage Grid = 230 Vrms -- ## \\( V(t) = V\_{rms} \,\sqrt{2} \,cos ( 2 \pi \,f \,t) \\) ## \\( V(t) = 230 \,\sqrt{2} \,cos ( 2 \pi \,50 \,t) \\)
--- # What is RMS? --
--- # What is RMS? # RMS = \\( \sqrt{\dfrac{1}{T}\int_0^T (f(t))^2 dt}\\) -- ## In Plain English: ## The RMS value of an AC signal is equal to the value of direct current (DC) which would have the same effect or energy change as the AC. --- # What is RMS? ## What is the average power (in Watts) dissipated in a resistor of 1 \\(\Omega\\) while carrying a 1 A(rms) current? --
--- # What is RMS? # In Power Engineering RMS values are almost always used instead of peak values ! # We also use RMS values in phasor diagrams ! --- # Active and Reactive Power -- ### What is the average power (in Watts) dissipated in an inductor with an impedance of \\(j 1 \, \Omega\\) while carrying a 1 A(rms) current?
[Edit Graph](https://www.desmos.com/calculator/in0czoq74w) --- # Active and Reactive Power ### What is the average power (in Watts) dissipated in an inductor with an impedance of \\(j 1 \, \Omega\\) while carrying a 1 A(rms) current? ## Remember: Real power only dissipates in resistive components. Ideal inductors or capacitors don't dissipate real power, but uses reactive power. --- # Active and Reactive Power ## What is \\(V\_{rms} \times I\_{rms} \,\\)? -- ## \\(V\_{rms} \times I\_{rms} \neq P \\) -- ## \\(S = V\_{rms} \times I\_{rms} \\) (in VA), Apparent Power -- ## Active Power (P) in Watts equal to ## \\(P= V\_{rms} I\_{rms} cos(\theta) \\) (in W) -- ## \\(cos(\theta)\\): Power factor --- # Unity Power Factor ## In resistive circuits (or in compensated circuits) ## Usually the desired case for electric grid.
--- # Lagging Power Factor ## In inductive (RL) circuits
--- # Leading Power Factor ## In Capacitive (RC) circuits
--- # \\(S = \sqrt{P^2 + Q^2}\\)
--- # \\(S = \sqrt{P^2 + Q^2}\\)
--- ## Important AC Power Equations
#### [EE Portal](https://electrical-engineering-portal.com/complex-power-analysis) --- # Any questions? ## You can download this presentation from: [keysan.me/ee361](http://keysan.me/ee361)