class: center, middle # EE-361 # PRACTICAL TRANSFORMERS ## Ozan Keysan [keysan.me](http://keysan.me) Office: C-113
•
Tel: 210 7586 --- # Review: Losses in Magnetic Circuits ## Hysteresis Loss: Proportional to Frequency
--- # Losses in Magnetic Circuits ## Eddy Current Loss: Proportional to Frequency\\(^2\\)
--- # Eddy Current Losses ### Sometimes Useful (e.g. Eddy current brakes) --
### How does [elliptical machine work](https://youtu.be/ekZkN_jQkZk?t=3m21s)? --- # Eddy Current Losses ### Sometimes NOT Useful (e.g. reduces efficiency in motors) -- ## How can you minimize it? ([Hint](https://www.youtube.com/watch?v=Ttl7_q--CYI))
--- # Eddy Current Losses ## Use laminations instead of a solid core ### Thin laminations increases the resistance of eddy current path --
### [Transformer Lamination Stamping](https://www.youtube.com/watch?v=e0MbosqTnk8) --- # Practical Transformers - ## Losses -- (Copper and Core) -- - ## Leakage flux -- - ## Magnetizing current -- - ## Hysteresis --- # Realistic Equivalent Circuit of a Transformer ## = Ideal Transformer + External Impedances -- ![](http://upload.wikimedia.org/wikipedia/commons/thumb/1/10/Transformer_equivalent_circuit-2.svg/786px-Transformer_equivalent_circuit-2.svg.png) --- # Winding Resistances: (\\(R_1, R_2\\)) or (\\(R_p, R_s\\)) - ## Resistance of the copper [Winding machine](http://www.youtube.com/watch?v=I_kJCLWwI2Y), [Winding for large transformers](http://youtu.be/yYFm3vxOVgw?t=24s), [Toroidal winding](https://www.youtube.com/shorts/4ibYv2cnPy4) -- - ### Question: In a step-down transformer which one is larger? ### \\(R_1\\) or \\(R_2\\)? -- - ## Copper Losses: \\(I^2 R \\) -- [Overloaded Transformers](https://youtu.be/D8EQPx-ptKk?t=41) --- # Leakage Flux -- ## Leakage Reactance: \\( X_{leakage} \\) ![](http://www.electrical4u.com/images/transformer-core-winding.gif) - ## Leakage through Air (Linear B-H, no hysteresis) --- # How to minimize leakage flux? --
- ### Windings are wound on top of each other --- # Magnetizing Flux -- ## A term represents the necessary flux in the core. ##Magnetizing Reactance: \\( X_{m} \\) ![](http://www.electrical4u.com/images/transformer-core-winding.gif) --- # Core Losses - ## Hysteresis Loss (\\(\propto\\) Frequency)
--- # Core Losses - ## Eddy Current Loss (\\(\propto\\) Frequency\\(^2\\)) ![](https://cdn2.magcraft.com/images/content/eddy-current-braking.png) --- ## How to minimize eddy current loss? -- ### Use Laminated Core
--- ## How to minimize eddy current loss? ## Use Laminated Core
--- #Excitation Current ## $$I_e(t) = I_c(t) + I_m(t)$$ ### Excitation Current = Core Loss Component + Magnetizing Component --- # Realistic Equivalent Circuit of a Transformer ![](http://upload.wikimedia.org/wikipedia/commons/thumb/1/10/Transformer_equivalent_circuit-2.svg/750px-Transformer_equivalent_circuit-2.svg.png) ### \\(V_p , V_s, I_p, I_s \\): Primary, secondary voltages and currents -- ### \\(R_p , R_s\\): Primary, secondary coil resistances -- ### \\(X_p , X_s\\): Leakage Reactances --- # Realistic Equivalent Circuit of a Transformer ![](http://upload.wikimedia.org/wikipedia/commons/thumb/1/10/Transformer_equivalent_circuit-2.svg/750px-Transformer_equivalent_circuit-2.svg.png) ### \\(R_c \\): Core Loss Resistance (to model hystresis/eddy current losses) -- ### \\(X_m\\): Magnetizing Reactance (due to non-zero \\(\int H dl\\) in the core) -- ### \\(E_p , E_s\\): Induced voltages in the ideal transformer --- ## There are a few ways to make analyze easier: ![](http://upload.wikimedia.org/wikipedia/commons/thumb/1/10/Transformer_equivalent_circuit-2.svg/750px-Transformer_equivalent_circuit-2.svg.png) -- # Transfer Secondary Parameters to the Primary Side --- ## Transfer Secondary Parameters to the Primary Side ## Multiply with \\((N_p/N_s)^2\\)
--- ## Transfer Secondary Parameters to the Primary Side ## Multiply with \\((N_p/N_s)^2\\)
### Optional: Transfer voltage and current to get rid of the ideal transformer --- # Simplification#2: ## Move parallel branch to the source side --
--- # Simplification#2: ## Move parallel branch to the source side
### Assumption voltage drop in \\(X_p\\) and \\(R_p\\) is negligible --- # Simplification: ## Combine Primary and Secondary Series Impedances --
--- ## Combine Primary and Secondary Series Impedances
### \\(R_{eq}=R_1+R'_2 = R_1 + (\frac{N_p}{N_s})^2 R_2\\) ### \\(X_{eq}=X_1+X'_2 = X_1 + (\frac{N_p}{N_s})^2 X_2\\) --- # Even More Simplification: ## Neglect Core Loss and Magnetizing Branch --
## Assumption: \\(I_c\\) + \\(I_m\\) small enough compared to \\(I_p\\) --- # For Large Transformers (>100 kVA) ## Efficiency > 99% (see [Siemens brochure](https://assets.new.siemens.com/siemens/assets/api/uuid:6eb3018983d08ec8ff18f87c5f5f14b70d82669f/version:1506684852/power-transformers-from-30-to-over-1300mva-en.pdf)) ## Copper resistances (\\(R_{eq}\\)) can be neglected --
--- # For Large Transformers (>100 kVA) ## Efficiency > 99% (see [Siemens brochure](http://www.energy.siemens.com/hq/pool/hq/power-transmission/Transformers/Power%20Transformers/power-transformers-from-30-to-over-1300MVA_EN.pdf)) ## Copper resistances (\\(R_{eq}\\)) can be neglected