class: center, middle # EE-361 # Magnetic Stress # Rotational Motion ## Ozan Keysan [keysan.me](http://keysan.me) Office: C-113
•
Tel: 210 7586 --- # Example: --- # Magnetic Stress (or Pressure) ## Independent of Area ##\\(P=\dfrac{\mu_0 H^2}{2} = \dfrac{B^2}{2\mu_0}\\) -- ## Stress x Area = Force ##\\(F=\dfrac{1}{2}A\mu_0 H^2 = \dfrac{B^2}{2\mu_0} A \\) --- #Magnets ### Why some magnets have backplates?
- [Why magnets attract?](http://www.youtube.com/watch?v=uTcuDprmues) - Why magnets repel? --- ## Mechanical Power & Energy: -- ## Linear Motion: -- \\(P = F v = F \dfrac{dx}{dt}\\) Watt -- ## Rotational: -- \\(P=T \omega = T \dfrac{d\theta}{dt} \\) Watt -- ## Linear Motion: \\(W = \int P dt = F x \\) Joule -- ## Rotational: \\(W= \int P dt = T \theta \\) Joule --- ## Linear Acceleration: -- ## \\(F = m a = m \dfrac{dv}{dt}\\) -- ## Rotational Acceleration: -- ## \\(T=J \dfrac{d\omega}{dt} \\) Watt ## J: Rotational Inertia (\\(kgm^2\\)) --- # What would happen in this circuit?
--- # Can you guess the torque expression?
--- # Rotational Sytems: -- ## Remember in linear systems: ### \\(f = - \dfrac{\partial W\_{mag}(\Phi, x)}{\partial x} |\_{\Phi = constant}\\) ### or alternatively use Co-energy: ### \\(f = \dfrac{\partial W'\_{mag}(\mathcal{F}, x)}{\partial x} |\_{\mathcal{F} = constant}\\) --- # Rotational Sytems: ## Take the derivative wrt \\( \theta \\) not \\( x \\): -- ### \\(T = - \dfrac{\partial W\_{mag}(\Phi, \theta)}{\partial \theta} |\_{\Phi = constant}\\) ### or alternatively ### \\(f = \dfrac{\partial W'\_{mag}(\mathcal{F}, \theta)}{\partial \theta} |\_{\mathcal{F} = constant}\\) #### [More information](http://engineering.nyu.edu/mechatronics/Control_Lab/Criag/Craig_RPI/SenActinMecha/EM_Motion_Fundamentals_2.pdf) --- # Rotational Sytems: ## Take the derivative wrt \\( \theta \\) not \\( x \\): -- ## \\(T = - \dfrac{1}{2}\Phi^2\dfrac{d R(\theta)}{d \theta} |\_{\Phi = constant}\\) ### or alternatively ## \\(T = \dfrac{1}{2}I^2\dfrac{d L(\theta)}{d \theta} |\_{i = constant}\\) --- # How can we achieve a constant rotation? -- ## Single Phase Reluctance Motor --
[Magnetorquer](https://blog.satsearch.co/2019-08-21-magnetorquers-an-overview-of-magnetic-torquer-products-available-on-the-global-marketplace-for-space.html) --- # Single Phase Reluctance Motor --
### [Magnetic Flux](https://www.youtube.com/watch?v=hDJnLt7cBTY), [Micro-stepping for higher accuracy](https://www.youtube.com/watch?v=eyqwLiowZiU) --- # Reluctance Motors
### [More info](http://electrical-engineering-portal.com/characteristics-and-work-principles-of-switched-reluctance-sr-motor) --- # Reluctance Motors
### [ABB High efficiency reluctance motors](https://new.abb.com/news/detail/71053/abb-ie5-synrm-motors-are-awarded-efficient-solution-label) --- # Who is this guy?
--- # James Dyson
### [Digital Motor](https://www.youtube.com/watch?v=_YDArV2M5EU), [Digital Motor 2](https://www.youtube.com/watch?v=-zg593Zw6PQ), [Manufacturing](https://www.youtube.com/watch?v=ttjKjnthDuY) --- # Dyson uses Reluctance Motors
### [Digital Motor](https://www.youtube.com/watch?v=_YDArV2M5EU), [Digital Motor 2](https://www.youtube.com/watch?v=-zg593Zw6PQ), [Manufacturing](https://www.youtube.com/watch?v=ttjKjnthDuY) --- # Reluctance Motor Example: ## Calculate the torque expression -- ### with constant current. -- ### with sinusoidal current -- ### [Torque Graphs](https://docs.google.com/spreadsheets/d/1MDdJiaDq6uIzYzGMhTugNqbFBcJJClO-m_LqdGe1ZQ4/edit?usp=sharing) ### [Solutions](https://github.com/ozank/ozank.github.io/raw/master/files/ee361_emec_reluctance_motor_example.pdf) --- # Summary ## Magnetic Circuit Tries -- - ### To maximize the inductance, to minimize the reluctance (\\(L=N^2/R\\)) - ### To decrease the magnetic energy (increase co-energy) ## Rotational systems are similar to linear systems, but take the derivative of magnetic energy in terms of \\(\theta\\) instead of \\(x\\). --- ## You can download this presentation from: [keysan.me/ee361](http://keysan.me/ee361)