class: center, middle # EE-463 STATIC POWER CONVERSION-I # 3-Phase Controlled Rectifiers ## Ozan Keysan ## [keysan.me](http://keysan.me) ### Office: C-113
•
Tel: 210 7586 --- # Review ## N-Phase Half Wave Rectifier
--- # Review ## 3-Phase Half Wave Diode Rectifier
--- # Review ## 3-Phase Half Wave Diode Rectifier Average Voltage? -- ## \\(V\_{dc}= \dfrac{3\sqrt{6}}{2 \pi} V\_{ph,rms}\\) ###or ## \\(V\_{dc}= \dfrac{3\sqrt{2}}{2 \pi} V\_{ll,rms}\\) --- # Half-bridge Thyristor Rectifier
--- # Half-bridge Thyristor Rectifier
--- # Half-bridge Thyristor Rectifier ## Average Voltage? -- ## \\(V\_{dc(\alpha)}= \dfrac{3\sqrt{6}}{2 \pi} V\_{ph,rms} cos (\alpha)\\) ###or ## \\(V\_{dc(\alpha)}= \dfrac{3\sqrt{2}}{2 \pi} V\_{ll,rms} cos (\alpha)\\) --- # Full-bridge Thyristor Rectifier
--- # Full-bridge Thyristor Rectifier
--- ## Diode Rectifier (or \\(\alpha=0\\))
--- # Full-bridge Thyristor Rectifier ### Remember output voltage follows line to line voltages!
--- # Full-bridge Thyristor Rectifier ### Remember output voltage follows line to line voltages!
--- # Full-bridge Thyristor Rectifier ## Non-zero firing angle --
--- # Full-bridge Thyristor Rectifier ## Non-zero firing angle --
--- # Output Voltage vs. Firing Angle --
--- # Output Voltage vs. Firing Angle
--- # Output Voltage vs. Firing Angle
--- # Output Voltage vs. Firing Angle
--- # Output Voltage vs. Firing Angle
--- # Output Voltage vs. Firing Angle
--- # Output Voltage vs. Firing Angle
--- # Full-bridge Thyristor Rectifier ## Average output voltage?
-- ### \\(V\_{d(\alpha)}= \dfrac{3\sqrt{2}}{\pi} V\_{ll,rms} cos (\alpha)\\) --- # Full-bridge Thyristor Rectifier ## What about the current? --
--- ## Current Waveform: No triple harmonics #### Comparison:
Single Phase
,
Three Phase
--
--- ## Current Waveform:
--- # Full-bridge Thyristor Rectifier ## Current Waveform: -- ## Fundamental RMS: \\(I_{s1}=\frac{\sqrt{6}}{\pi}= 0.78 I_d\\) -- ## Total RMS: \\(I_{s}=\sqrt{\frac{2}{3}} I_d = 0.816 I_d\\) -- ## THD= 31.08 % --- # Effect of Ls (Commutation) --
--- # Effect of Ls (Commutation) --- # Commutation: \\(\alpha =0 \\), \\(L\_s =0 \\)
--- # Commutation: \\(\alpha =0 \\), \\(L\_s > 0 \\)
--- # Commutation: \\(\alpha =20 \\), \\(L\_s > 0 \\)
--- # Commutation: \\(\alpha =40 \\), \\(L\_s > 0 \\)
--- # Effect of Ls (Commutation)
--- # Effect of Ls (Commutation) -- ### \\(A_u = \omega Ls Id\\) (repeats itself every \\(\pi/3\\)) -- ### \\(V\_{d(\alpha)}= \dfrac{3\sqrt{2}}{\pi} V\_{ll,rms} cos (\alpha) - \dfrac{ 3 \omega Ls Id}{\pi}\\) --- # Effect of Ls (Commutation) -- ### Introduces a voltage drop on the rectified side - ### Single Phase: \\(\dfrac{2\omega L_s}{\pi}I_a\\) -- - ### Three Phase: \\(\dfrac{3\omega L_s}{\pi}I_a\\) -- - ### Resultant voltage in a 3-ph rectifier: ### \\(V\_{d\alpha}= \dfrac{3\sqrt{2}}{\pi}V\_{l-l} cos (\alpha) - \dfrac{3\omega L_s}{\pi}I_a \\) --- # Inverter Mode of Operation ## Two Quadrant Operation --
### Two quadrant operation with source side voltage (i.e. DC motor) --- ## How can you obtain four-quadrant operation? -- ## Use two separate converters
### Ref: Mohan Chapter 13 DC Motor Drives --- ## How can you obtain four-quadrant operation? ## Use two separate converters
### Ref: Mohan Chapter 13 DC Motor Drives --- ## You can download this presentation from: [keysan.me/ee463](http://keysan.me/ee463)