class: center, middle # EE-362 # Multiply-Excited Systems # Dynamic Mechanical Systems ## Ozan Keysan [keysan.me](http:/keysan.me) Office: C-113
•
Tel: 210 7586 --- # Review: # Rotational Systems: ## \\(F = - \dfrac{1}{2}\Phi^2\dfrac{d R(x)}{dx}\\) ### or alternatively ## \\(F = \dfrac{1}{2}I^2\dfrac{d L(x)}{dx}\\) --- # Review: # Rotational Systems: ## \\(T = - \dfrac{1}{2}\Phi^2\dfrac{d R(\theta)}{d \theta}\\) ### or alternatively ## \\(T = \dfrac{1}{2}I^2\dfrac{d L(\theta)}{d \theta}\\) --- # What is the torque in the following systems? ## a) If Coil#1 is excited only, ## b) If Coil#2 is excited only, --- # What is the torque? ## Cylindrical Rotor, Cylindrical Stator
--- # What is the torque? ## Cylindrical Rotor, Salient Stator
--- # What is the torque? ## Salient Rotor, Cylindrical Stator
--- # Multiply-Excited Systems ## What happens if both of the coils are excited?
--- # Multiply-Excited Systems
### Electrical Energy = Magnetic Energy + Mechanical Energy -- --- # Mutual Inductance
### Write down the voltage equation of Inductor 2. --- # What is the stored energy in coil1? ### \\(W\_{mag1}= \dfrac{1}{2}i^2 L\\) -- \\(\quad \rightarrow\\) Not Correct! -- ### \\(dW\_{mag1}= i\_1 d\lambda\_1 \\) -- ### \\(dW\_{mag1}= i\_1 (L\_{11}di\_1 + L\_{12}di\_2) \\) --- # Total stored energy (coil1+coil2)? ## \\(dW\_{mag}= i\_1 d\lambda\_1 + i\_2d\lambda\_2 \\) -- ## Or it can be written as: -- ## \\(W\_{mag}=\int dW\_{mag} \\) ## \\(= \dfrac{1}{2} L\_{11}i\_1^2 + \dfrac{1}{2} L\_{22}i\_2^2 + M i\_1 i\_2\\) --- # Stored Energy in Matrix Form -- ### \\(W\_{mag}=\dfrac{1}{2} \begin{bmatrix} i\_1 & i\_2 \end{bmatrix} \begin{bmatrix} L\_{11} & M \\\ M & L\_{22} \end{bmatrix} \begin{bmatrix} i\_1 \\\ i\_2 \end{bmatrix}\\) -- ### Generalized case ### \\(W\_{mag} = \dfrac{1}{2} \mathbf{I}_t \mathbf{L} \mathbf{I}\\) ### An application of multiply excited systems: [Contactless Surgery](https://www.youtube.com/watch?v=ocE3MjF77Wk) [More information](http://robohub.org/minimally-invasive-eye-surgery-on-the-horizon-as-magnetically-guided-microbots-move-toward-clinical-trials/) --- # Torque in Multiply Excited Sytems ## still depends on the derivative of \\(W\_{mag}\\) -- ### \\(T\_{mech}= \dfrac{1}{2} \dfrac{dL\_{11}}{d\theta}i\_1^2 + \dfrac{1}{2} \dfrac{dL\_{22}}{d\theta}i\_2^2\\) ### \\(\quad\quad\quad + \dfrac{dM}{d\theta} i\_1 i\_2\\) -- ### \\(T\_{mech} = \dfrac{1}{2} \mathbf{I}_t \dfrac{d\mathbf{L}}{d\theta} \mathbf{I}\\) --- # Cylindrical Rotor, Cylindrical Stator
### \\(T=i\_1 i\_2 \dfrac{\partial M}{\partial \theta}\\) : (\\(L\_{11}\\),\\(L\_{22}\\) constant) --- # Cylindrical Rotor, Salient Stator
### \\(T=\dfrac{1}{2}i\_2^2 \dfrac{\partial L\_{22}}{\partial \theta} + i\_1 i\_2 \dfrac{\partial M}{\partial \theta}\\) : (\\(L\_{11}\\) constant) --- # Salient Rotor, Cylindrical Stator
### \\(T=\dfrac{1}{2}i\_1^2 \dfrac{\partial L\_{11}}{\partial \theta} + i\_1 i\_2 \dfrac{\partial M}{\partial \theta}\\) : (\\(L\_{22}\\) constant) --- # Combination with Mechanical Systems: ## Linear and Rotational Motion
Linear
Rotational
X: (m)
(θ): (radians)
v: Velocity (m/s)
ω: Angular Velocity (θ/s)
F: Force (N)
T: Torque (Nm)
m: Mass (kg)
J: Inertia (kgm^2)
F=m dv/dt
T=J dω/dt
--- # Dynamic Equations: Ideal Spring ![](http://upload.wikimedia.org/wikipedia/commons/9/9d/Simple_harmonic_oscillator.gif) ## \\(F = k (x - x_0)\\): No energy dissipation (~Ideal Inductor) --- # Dynamic Equations: Damping
### \\(F = B v = B \dfrac{dx}{dt}\\) : Dissipates energy (~Resistance) ### Overdamped, [underdamped](http://www.youtube.com/watch?v=j-zczJXSxnw) (similar to RLC circuits) ### [Bad vs. good shock absorbers](https://www.youtube.com/watch?v=j0vhTg82Pz0), [Seismic dampers](https://www.youtube.com/watch?v=wX43aAJozA0), [Tuned mass dampers](https://www.youtube.com/watch?v=RSGwzSp_hAc), [Understanding vibration and resonance](https://www.youtube.com/watch?v=vLaFAKnaRJU) --- # Dynamic Equations: Inertia ## \\(F=ma\\) ## or ## \\(F = m \dfrac{dv}{dt} = m \dfrac{d^2 x}{d^2 t} \\) --- # Dynamic Equations: Mechanical Side ## \\(f\_{mech} = M \dfrac{d^2 x}{d^2 t} + B \dfrac{dx}{dt} \\) ## \\(\quad \quad \quad + k (x-x\_0) + f\_{external} \\) --- # Bose's Active Suspension System
### [Bose suspension system](https://www.youtube.com/watch?v=3KPYIaks1UY), [Bose suspension will be mass produced](https://www.digitaltrends.com/cars/boses-revolutionary-adaptive-suspension-gets-a-reboot-for-2019/) --- # Bose Ride
### [Bose Ride](https://www.youtube.com/watch?v=D5hSwaMxNIA), [Bose ride presentation](https://www.youtube.com/watch?v=wQSNlJEdOZE), [Truck Driver comments-1](https://youtu.be/L1RyhBzS3PU?t=70), [Truck Driver comments-2](https://youtu.be/iFzdHUJOv1g?t=40) --- # Summary - ## Multiply excited systems still tries to minimize total stored magnetic energy - ## Derivative of self inductances and mutual inductance can work together or oppose each other. - ## Magnetic forces interact with the mechanical systems and generate a system response --- ## You can download this presentation from: [keysan.me/ee362](http://keysan.me/ee362)