class: center, middle # EE-362 ELECTROMECHANICAL ENERGY CONVERSION-II # Salient Pole Synchronous Machines ## Ozan Keysan [keysan.me](http://keysan.me) Office: C-113
•
Tel: 210 7586 --- # Cylindrical Machine vs. Salient Pole
### Salient Pole: Position dependent air-gap reluctance(and hence inductance; \\(L=N^2/R\\)) --- # Torque in Cylindrical Rotor, Cylindrical Stator
### \\(T=i\_1 i\_2 \dfrac{\partial M}{\partial \theta}\\) --- # Torque in Salient Rotor, Cylindrical Stator
### \\(T= i\_1 i\_2 \dfrac{\partial M}{\partial \theta} + \dfrac{1}{2}i\_1^2 \dfrac{\partial L\_{11}}{\partial \theta} \\) --- ## Cylindrical Rotor Synchronous Machine ### No saliency in the rotor: no reluctance torque
--- ## SMPM: Surface Mount Permanent Magnet Motor ### No saliency in the rotor: no reluctance torque
--- # Salient Pole Rotor Synchronous Machines
### Airgap is not uniform. ### There are both reluctance and synchronous torque components --- ## Motors With Saliency (has reluctance torque) ## IPM: Interior Permanent Magnet Motor
--- ## Motors With Saliency (has reluctance torque) ### SRM: [Synchronous Reluctance Motor](https://www.youtube.com/watch?v=vvw6k4ppUZU) ####(with or without PMs)
### [ABB Synchronous Reluctance Motors](https://www.youtube.com/watch?v=b3uprygbBWQ) --- ## Motors With Saliency (has reluctance torque) ## Most electric car motors have reluctance torque
--- ## Motors With Saliency (has reluctance torque)
### [Tesla Model 3 Motor](https://www.youtube.com/watch?v=wFZZ5PICQeo), [Types of EV Motors](https://www.youtube.com/watch?v=6H5vtu5_SF4) --- ## Salient Pole Synchronous Motor ## Renault Zoe, 80kW motor
--- # D-Q Axis
--- # D-Q Axis
## Direct Axis: d-axis ## Quadrature Axis: q-axis --- # D-Q Axis
### Remember [reluctance torque](https://www.youtube.com/watch?v=hDJnLt7cBTY) --- # D-Q Axis
--- # D-Q Axis ## Salient Pole Machine: \\(L_d > L_q \rightarrow X_d > X_q\\) ### (Usually \\(X_q = 0.6 - 0.7 \; X_d\\)) ## Cylindrical Machine: \\(X_d = X_q = X\_s\\) --- # Phasor Diagram in a Salient Pole Machine ## Separate \\(I_a\\) in to two components: ## \\(\vec{I_a} = \vec{I_d} + \vec{I_q}\\) - ## Direct-axis current \\(I_d\\): In phase with \\(\phi_f\\) - ## Quadrature-axis current \\(I_q\\): Perpendicular to \\(\phi_f\\), and therefore in-phase with \\(E_f\\) (due to derivative relation (jw) between flux and voltage) --- ## Phasor Diagram in a Salient Pole Machine (Generating) --- ## Phasor Diagram in a Salient Pole Machine (Motoring)
--- # Phasor Diagram in a Salient Pole Machine ## Some key points: ## \\(|E_f| = V_t cos(\delta) + X_d I_d \\) ## \\(I_d \\) has more effect on \\(E_f\\) (creates field flux) --- # Phasor Diagram in a Salient Pole Machine ## Some key points: ## \\( V_t sin(\delta) = X_q I_q \\) ## \\( I_q \\) has more effect on load angle \\(\delta\\) (creates torque) --- # Phasor Diagram in a Salient Pole Machine ## including \\(R_a\\) (in generator mode)
--- # Phasor Diagram in a Salient Pole Machine ## including \\(R_a\\) ## \\(|E_f| = V_t cos(\delta) + X_d I_d + R_a I_q \\) ## \\( V_t sin(\delta) + R_a I_d = X_q I_q \\) --- # Power in Salient Pole Machines ## Again the similar geometry tricks: ## Start with: \\(P = 3 V\_t I\_a cos (\theta) \\) -- ## \\( I\_a cos (\theta) =\\)\\( I\_d sin (\delta) + I\_q cos (\delta) \\) -- ## \\(P = 3 V\_t (I\_d sin (\delta) + I\_q cos (\delta) ) \\) --- # Power in Salient Pole Machines ## \\( V_t sin(\delta) = X_q I_q \\) -- \\( \rightarrow I_q =\dfrac{V_t sin(\delta)}{Xq} \\) -- ## \\( V_t cos(\delta) = E_f - X_d I_d \\) -- \\( \rightarrow I_d =\dfrac{E_f - V_t cos (\delta)}{X_d} \\) --- # Power in Salient Pole Machines ### Total Power: ### \\(P = 3 \left[ \dfrac{V_t E_f}{X_d}sin(\delta)+ \dfrac{V_t^2(X_d - X_q)}{2 X_d X_q}sin(2\delta) \right]\\) -- - ## First Term: Same with Cylindrical Machines -- - ## Second Term: Reluctance Power (Independent of \\(E_f\\), even exists if \\(I_f=0\\)) --- # Power in Salient Pole Machines
--- # Example: ### A 3-phase star connected salient pole generator has a direct-axis impedance of \\(10 \Omega\\), and quadrature axis impedance of \\(6.5 \Omega\\). -- ### If the generator is supplying 10 A, with a phase angle of 20 degrees lagging. Calculate: -- ### a) Load Angle -- ### b) D-Q components of the armature current -- ### c) Magnitude of Ef --- ## You can download this presentation from: [keysan.me/ee362](http://keysan.me/ee362)