class: center, middle # EE-462 UTILIZATION OF ELECTRICAL ENERGY # Mechanical Systems ## Ozan Keysan ## [keysan.me](http://keysan.me) ### Office: C-113
•
Tel: 210 7586 --- # Linear Motion -- ### \\(\vec{f} = m \dfrac{d\vec{v}}{dt} \\) -- ### It is more common to use "u" in mechanical systems ### \\(u = \dfrac{dx}{dt} \\), \\(a = \dfrac{du}{dt} \\) ### \\(f\_{elec} - f\_{mech} = m \dfrac{du}{dt} \\) -- ### Stored energy: \\(W = \dfrac{1}{2}m u^2\\) --- # Rotational Motion -- ### \\(\vec{T} = J \dfrac{d\vec{\omega}}{dt} \\) -- ### \\(\omega= \dfrac{d \theta}{dt} \\) ### \\(T\_{elec} - T\_{mech} = J \dfrac{d \omega }{dt} \\) -- ### Stored energy: \\(W = \dfrac{1}{2}J \omega^2\\) --- # Moment of Inertia -- ## What is its unit? -- : \\(kg m^2\\) --
--- # Importance of Inertia in Drive Systems -- ## [Old Diesel Engine](https://www.youtube.com/watch?v=nFQ64a_cGXg) ## [Engine Start](https://www.youtube.com/watch?v=iPyvKOWl7PY) -- ## Flywheel store kinetic energy, reduce speed ripples -- ## Reduces the dynamic performance of the drive -- ## Large energy to dissipate in dynamic braking --- ## What is the most common shape in electric motors? -- ## Cylinder -- ### What is the inertia of a solid cylinder? -- ## \\(J = \rho \dfrac{\pi}{2} R^4 L\\) -- ## \\(J = \dfrac{1}{2}M R^2\\) --- # Rotational Inertia of Different Shapes
--- ## Comparison of Different Shapes
--- # Analogy between mechanical & electrical systems --
--- # Analogy between mechanical & electrical systems
--- ## Motor with Load Inertia
--- ## Motor with Shaft: Equivalent Circuit
### [Low-pass Pi Filter](https://en.wikipedia.org/wiki/Electronic_filter) ### [Pi-Section Filters](http://www.kb6nu.com/tag/pi-network/) ### [Modelling Shaft Stiffness in Simulink](https://www.mathworks.com/help/physmod/sps/powersys/ref/mechanicalshaft.html) ### [Stiffness Animation](http://lpsa.swarthmore.edu/Systems/MechRotating/RotMechSysElem.html), [Drag Race](https://www.youtube.com/watch?v=mfJejgODr3E) --- ## Reading Materials ### [Mechanical-electrical analogies](https://en.wikipedia.org/wiki/Mechanical-electrical_analogies) ### [One-Port Elements](http://web.mit.edu/2.14/www/Handouts/OnePorts.pdf) ### [Electrical Analogies of Mechanical Systems](https://www.tutorialspoint.com/control_systems/control_systems_electrical_analogies_mechanical.htm) ### [Mechanical and Electrical Analogies](http://www.vias.org/matsch_capmag/matsch_caps_magnetics_chap1_20.html) ### [First order mechanical systems](https://www.slideshare.net/JARossiter/system-modelling-1st-order-models) ### [Dynamics of a motor](http://www2.ece.ohio-state.edu/~passino/lab2_rotary_dynamics.pdf) --- # Dynamics of Mechanical Systems: Resonance
### [Transfer function and mathematical modelling](https://www.slideshare.net/vishalgohel12195/transfer-function-and-mathematical-modeling) -- ### [Tacoma Bridge](https://www.youtube.com/watch?v=lXyG68_caV4) ### [Forced vibration-1](https://www.youtube.com/watch?v=OaXSmPgl1os), [Resonant Freq.](https://www.youtube.com/watch?v=LV_UuzEznHs) ### [Torsional Resonance](https://www.youtube.com/watch?v=JLY-yQOpL20) --- # Resonant Modes ### [Cantilever Vibration](https://www.youtube.com/watch?v=lKT3wBIUFhA) ### [Resonant Modes](https://www.youtube.com/watch?v=uWoiMMLIvco) ### [Modal Shapes](https://www.youtube.com/watch?v=kvG7OrjBirI) ### [Modal Shapes](https://www.youtube.com/watch?v=d3U_m-4XOtg) --- # Frictional Forces -- ## Damping --
--- # Frictional Forces: Coulomb friction
### Constant force (does not change with speed) --- # Frictional Forces: Viscous friction (Damping)
## Proportional to speed (\\(T= B \omega\\)) --- # Frictional Forces: Static friction ### Extra friction (or stiction) at zero speed
### Usually small and ignored in linear models --- # Frictional Forces: Coulomb + Viscous ### Extra friction (or stiction) at zero speed
### [How to model in Simulink?](https://www.mathworks.com/help/simulink/slref/coulombandviscousfriction.html) --- # Windage Torque -- ## Proportional to \\(\omega^2\\) ## \\(T \propto \omega^2\\) -- ## \\(P \propto \omega^3\\) -- ### Can be represented as damping if the speed is varying in a narrow range: ## \\(T_B + T_W = B' \omega \\) --- ## Example: Drag Force in a Car
## \\(F = \dfrac{1}{2} \rho A C_D v^2 \\) --- # Drag Coefficient
--- # Drag Coefficient Comparison
--- ## Coupling Mechanisms: Direct Coupling
### Sleeve Coupling --- ## Coupling Mechanisms: Direct Coupling
### Jaw Type Coupling --- ## Coupling Mechanisms ### Direct Coupling
### Spiral Type Coupling --- ## Coupling Mechanisms ## Gearbox
### Gear Ratio = \\( \omega\_{in}:\omega\_{out}\\) #### [Simulink Gearbox](https://www.mathworks.com/help/physmod/simscape/ref/gearbox.html) --- ## Coupling Mechanisms ## Rack and Pinion
### From rotational to linear motion --- ## Coupling Mechanisms ## Belt Coupling
--- # Coupling Issues ## [Shaft Misalignment](https://www.youtube.com/watch?v=MXAsKFnCqUE) ## [Unbalanced rotor](https://www.youtube.com/watch?v=R2hO--TIjjA) ## [Rotor Critical Speed](https://www.youtube.com/watch?v=dO51IjGKrTM) --- # Load Types -- ## Centrifugal Loads (Pump, Fan, etc)
## \\(T\_{load} = k \omega^2\\) ## \\(P\_{load} = k \omega^3\\) --- ## Constant Power Loads ### Paper rolling machine
### Constant tension should be applied at constant linear speed --- ## Constant Torque Loads ### Compressors
## \\(P\_{load} = k \omega\\) --- ## Constant Torque Loads: Conveyors
### Usually there is a high starting torque (to overcome static friction) --- ## Constant Torque Loads: Crane Hoists
### There exist a viscous friction force combined with load mass ### \\(T\_{load} = B \omega + T\_{mech}\\) ### Requires a four-quadrant drive [Oil-rig Drawworks](https://www.youtube.com/watch?v=yHfnL43H48g), [Drawworks-2](https://www.youtube.com/watch?v=wgUV5ov2jC0) --- ## Constant Torque Loads: Crane Hoists ### Four quadrant operation
--- ## You can download this presentation from: [keysan.me/ee462](http://keysan.me/ee462)