class: center, middle # EE-564 Design of Electrical Machines ## Ozan Keysan [ozan.keysan.me](http://ozan.keysan.me) Office: C-113
•
Tel: 210 7586 --- # Estimation of Machine Parameters -- ## Some definitions: -- - ## Effective Core length - ## Carter's Coefficient --- # Equivalent Core Length ### Section 3.2 of the textbook
--- # Carter's Coefficient -- ## Way to estimate the flux density by converting slotted rotor/stator to a perfect cylinder. ### Ref: Section 3.1.1 of the textbook --- # Carter's Coefficient
--- # Carter's Coefficient -- - ## First assume the rotor is smooth to find \\(k\_{cs}\\): ## \\( \delta\_e = k\_{cs} \delta \\) -- - ## Then assume the stator is smooth to find \\(k\_{cr}\\): -- - ## Total Carter coefficient is the product of two ## \\( k\_{c} = k\_{cs} \times k\_{cr} \\): --- # Carter's Coefficient ## \\(k\_c = \dfrac{\tau\_u}{\tau\_u - K b\_1}\\) ## where: ## \\(K = \dfrac{b\_1 / \delta }{5 + b\_1 / \delta }\\) --- # Example 3-1: -- ### Calculate the Carter's coefficient for an air gap (\\(\delta = 0.8 \\)) mm. The slot opening \\(b_1\\) is 3 mm. Rotor slots are closed and the stator slot pitch is 10 mm. -- ### How much current is required to magnetize the airgap to 0.9 T (fundamental), if Ns=100, pole number=4, q=3, full-pitched winding. --- ## Back to Equivalent Core Length -- ## Equivalent Core Length with Cooling ### Larger machines requires ducts for cooling --
---
## Need to calculate the effective length of the opening -- ## Use the same technique --- ## Example: -- ### In a machine, stator core is 990 mm. There are 25 stacks of 30 mm long, with 10 mm cooling ducts (24 ducts). Airgap is 3 mm. ### Calculate the effective core length if the rotor surface is smooth. --- # Flux Density in a Slot --
## \\(\tau_u = \dfrac{\pi D}{Q_s}\\) --- # Flux Density in a Slot --
--- # Example
--- # Back Core Flux --- # D-Q Axis
--- # D-Q Axis
--- # D-Q Axis
--- # Back Core Flux
### For magnetic voltage calculations refer to pg. 178 --- # Example --- ## Magnetizing Current
### Can be linearized by Carter's coefficient (use \\(\delta_e\\)) (see section 3.5 for details) --- # Magnetizing Inductance -- ## What is inductance? --- # Magnetizing Inductance ## \\(\Phi\_{pole} = \int B dS\\) -- \\(=\dfrac{2}{\pi}\hat{B}\tau\_{pole}l'\\) ### if B is sinusoidal --- # Magnetizing Inductance (Per-phase) -- ### \\(L\_{m (ph)} = \dfrac{2}{\pi} \mu\_0 \dfrac{1}{2p}\dfrac{4}{\pi} \dfrac{\tau\_p}{\delta\_{ef}} l' (k\_{ws}N\_s)^2\\) -- ### Writing pole pitch in terms of diameter -- ### \\(L\_{m (ph)} = \dfrac{2 \mu\_0 D}{\pi p^2 \delta\_{ef}} l' (k\_{ws}N\_s)^2 \\) --- # Magnetizing Inductance (Total) -- ### For 3-phase machines ### \\(L\_{m} = \dfrac{3}{2} L\_{m (ph)} \\) -- ### \\(L\_{m} = \dfrac{3 \mu\_0 D}{\pi p^2 \delta\_{ef}} l' (k\_{ws}N\_s)^2 \\) --- # Magnetizing Inductance -- - ## Increases with number of turns -- - ## Reduces with large airgap -- - ## Reduces with the number of poles (power factor is worse at machines with higher number of poles) --- # Magnetizing Inductance -- - ## Reduces with increasing voltage: -- Saturation -- - ## Reduces with torque: Why? --- # Flux Lines vs Torque
--- # Magnetizing Inductance vs Torque
--- # Magnetizing Inductance
#### Magnetizing inductance variation of a 4-pole machine --- # Leakage Flux (Ch4) -- ## Flux that does not cross the airgap -- ## Flux crosses the airgap but does not link the winding --- # Leakage Flux ## Flux that does not cross the airgap -- - ### Pole Leakage Flux -- - ### Slot Leakage Flux -- - ### Tooth Tip Leakage Flux -- - ### End Winding (Overhang) Leakage Flux --- # Pole Leakage Flux ### In salient pole machines (i.e. synchronous machine)
--- # Slot-Tooth Tip Leakage Flux
--- # End Winding Leakage Flux
--- # End Winding Leakage Flux
--- # Air-Gap Leakage Inductance (\\(L\_{\delta}\\)) ### Models the higher order harmonics in the induced voltage -- ### \\(E\_v = \dfrac{\mu\_0}{\pi} \omega \dfrac{m}{\delta} D l' (\dfrac{N}{p})^2 I\_m (\dfrac{k\_{wv}}{v})^2\\) -- ### \\(E = \sum E_v \\) -- ### \\(E = \omega I\_m (L\_m + L\_\delta)\\) --- # Air-Gap Leakage Inductance (\\(L\_{\delta}\\)) ### Models the higher order harmonics in the induced voltage -- ### \\(L\_\delta = \dfrac{\mu\_0}{\pi}\dfrac{m}{\delta} D l' (\dfrac{N}{p})^2 \sum\_{v \neq 1 }(\dfrac{k\_{wv}}{v})^2\\) -- ### \\(L\_\delta = \sigma\_\delta L\_m \\) -- ### \\(\sigma\_\delta \\): leakage factorof the airap inductance --- # Air-Gap Leakage Inductance (\\(L\_{\delta}\\))
--- # Slot Leakage Inductance --
--- # Slot Leakage Inductance -- ### for the bottom part (\\(L\_{u1}\\)) ### \\(B(h) = \mu\_0 H (h) = \mu\_0 \dfrac{z\_Q I \dfrac{h}{h\_4}}{b\_4} \\) -- ### \\(L\_{u1} = \dfrac{l' b\_4}{\mu\_0 I^2} \int_0^{h\_4} B^2(h) dh\\) --- # Slot Leakage Inductance -- ### repeat for the upper part (\\(L\_{u2}\\)) ### \\(B(h) = \mu\_0 \dfrac{z\_Q I}{b\_1} \\) (Constant B) --- # Slot Leakage Inductance -- ### Inductance for one slot: ### \\(W\_u = 1/2 L\_{u1} I^2 = 1/2 \mu_0 l' z\_Q^2 I^2 (\lambda_1 + \lambda_4)\\) --- # Total Slot Leakage Inductance --
--- # Total Slot Leakage Inductance -- ### \\(L\_u = \dfrac{Q}{am}\dfrac{1}{a} L\_{u1}\\) -- ### \\(L\_u = \mu\_0 l' \dfrac{Q}{m} (\dfrac{z\_Q}{a})^2 \lambda\_{u}\\) -- ### \\(N= \dfrac{Q}{2am} z\_Q\\) -- ### \\(L\_u = \mu\_0 l' \dfrac{4m}{Q} N^2 \lambda\_{u}\\) --- # Ex. 4.2: --- # Slot Shapes
--- # Tooth Tip Leakage Flux --
--- # Leakage Inductance
#### Leakage inductance variation of a 4-pole machine --- # Reading Assignment: Chapter 4 --- # Losses in Magnetic Circuits -- - ## Hysteresis Losses -- - ## Eddy Current Losses --- # Hysteresis Losses ## Steinmetz's [Equation](http://web.eecs.utk.edu/~dcostine/ECE482/Spring2015/materials/magnetics/CoreLossTechniques.pdf) -- ## \\(P\_{hy}= \eta V f B\_{max}^k\\) - ### \\(f\\): Frequency - ### \\(V\\): Volume - ### \\(B\_{max}\\): Maximum flux density - ### \\(\eta\\),\\(k\\): Constants depending on the material properties. k is typically 1.6 (or between 1.5 and 2.5) --- # Eddy Current Losses -- ### [Catalogues](http://www.sura.se/Sura/hp_products.nsf/vOpendocument/03A8B2433FAE16C4C1256AA8002280E6/$FILE/NO-08.pdf) usually give combined eddy and hysteresis losses --- # Magnetic Losses ## Beware of harmonics (especially with an inverter) ### With Sinusoidal Supply
--- # Magnetic Losses ## Beware of harmonics (especially with an inverter) ### With Inverter
--- ## You can download this presentation from: [keysan.me/ee564](http://keysan.me/ee564)