class: center, middle # Roketsan Training - Session III # Electromechanical Energy Conversion ## Ozan Keysan [keysan.me](http://keysan.me) Office: C-113
•
Tel: 210 7586 --- # Lorenz Force ## \\(\vec{F} = q (\vec{E} + \vec{v} \times \vec{B})\\) -- ### In a purely magnetic system (no electric field) : ## \\(\vec{F} = q \vec{v} \times \vec{B}\\) -- ### or alternatively force density (\\(N/m^3\\))): ## \\(\vec{f} = \rho \vec{v} \times \vec{B} = \vec{J} \times \vec{B}\\) #### \\( \rho \\): Charge density (C/m3) , \\( \vec{v} \\): velocity --- #Lorenz Force ## \\(\vec{F} = \vec{J} \times \vec{B}\\)
### \\( \vec{J}\\): Current Density (A/m2), \\( \vec{B}\\): Magnetic Field Density (T) --- ### Let's integrate force density \\(\vec{F}\\) over the current carrying wire volume --
## \\( F = B I L \\) ### B: Magnetic Field Density, I: Current, L: Length of the wire -- #### but don't forget the cross operator between B and I --- ### Let's integrate force density \\(\vec{F}\\) over the current carrying wire volume
## \\( F = B \times I L \\) ### Force is maximum when B and I are perpendicular to each other --- # Lorenz Force Applications - ### [Force Demo](http://www.youtube.com/watch?v=K9ks_DNPAFQ) - ### [Homopolar Motor](http://www.youtube.com/watch?v=kJKuNcgbW-o) - ### [World's Simplest Electric Train](https://www.youtube.com/watch?v=J9b0J29OzAU) - ### [Electromagnetic Aircraft Launcher](https://www.youtube.com/watch?v=T1Icd3MFmWc) - ### [Navy Railgun](https://www.youtube.com/watch?v=NmFeRYPNP88), [Railgun-2](https://www.youtube.com/watch?v=_VvXXtT3HoU) - ### [Aselsan Tufan](https://www.youtube.com/watch?v=O5GtuQk3t44) - ### [Aselsan Tufan-2](https://www.youtube.com/watch?v=MxloiA5mSSk) --- # Electromagnetic Launcher (Railgun)
--- ## ASELSAN TUFAN
## 8 MJ, 2000 m/s exit velocity, 2 Million Amps peak current --- # Electromagnetic Launcher (Railgun)
--- #Lorenz Force ## \\( F = B \times I L \\) ### Exercise: - ### How can we increase the force in a electromagnetic system? -- - ### Increase Magnetic Field (more magnet, more field current) -- - ### Increase Current -- - ### Increase the volume of conductor (longer, larger area, more number of turns) --- ## Limitations in a Practical System ## Increasing B (Magnetic Field Density) -- ## Limits of the permanent magnets ( Brem less than 1.4 T, B airgap around 0.7 T) -- ## Magnetic Saturation (steel laminations: 1.5 T, cobalt SMC: 1.8-2 T) -- ## Efficiency and volume issues with field windings (electromagnets) --- ## Limitations in a Practical System ## Increasing Current (Electrical Loading) -- - ## Heating (Copper losses proportional with \\( I^2\\) -- - ## Resistance also increases with temperature (feed forward mechanism) -- - ## Short overload is possible due to thermal mass --- ## Limitations in a Practical System ## Increasing Copper Length: -- - ## Increases resistance, and losses -- ## Increasing cross section area of the wire -- - ## Increases eddy current losses, increases mass -- ## Using more number of turns - ## Increases volume, but usually more preferable to increasing cross section area --- ### How can we calculate non-current carrying electromagnetic systems? ## A Solenoid
--- # Simplified Representation of a Solenoid
## How can you calculate the generated force? --- # A very Important Rule: # There is no direct connection between electrical systems and mechanical force! -- ## Electrical energy is converted to magnetic energy, then magnetic energy is converted to mechanical energy -- ## Electric Energy Input = -- ## Losses (Heat) + Stored Magnetic Energy + Mechanical Work --- # Equivalent Circuit of a Solenoid
--- ### Let's ignore the losses for now -- ### Electric Energy Input = Stored Magnetic Energy + Mechanical Work
--- # Review: Stored Magnetic Energy ## \\(W\_{stored} = \int_0^\lambda i(\lambda) d\lambda \\) -- ## or from B-H curve ## \\(W\_{stored} = \int \_{volume } (\int_0^B H dB) \\) --- # Review: Stored Magnetic Energy ### In linear magnetic systems (no saturation) ## W(magnetic) = \\(\dfrac{1}{2} \lambda i = \dfrac{1}{2} L i^2 =\dfrac{1}{2L} \lambda^2 \\) --- # Singly-Excited Electromechanical System
--- # Example: --- # Example: ### Find magnetic stored energy as a function of x. (I=10 A)
--- # Example Cont: ### Find magnetic stored energy if N=1000, g=2mm, d=15cm, l=10cm
--- # Force from the Stored Energy
-- ## Derivative of Energy w.r.t. position gives the force! --- # Force from Stored Energy ## \\(W\_{magnetic} = i d\lambda - f dx\\) ### Take derivative -- ### Some useful reading: - #### [MIT From Lasers to Motors](http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-007-electromagnetic-energy-from-motors-to-lasers-spring-2011/readings/MIT6_007S11_forces.pdf) - #### [Fitzgerald-Electromechanical Energy Conversion](https://feevuted.edu.vn/wp-content/uploads/2018/02/Fitzgerald-2002-Electric-Machinery_Cambrige.pdf) --- # Force from Stored Energy ### \\(Force = - \dfrac{\partial W\_{mag}(\lambda, x)}{\partial x} |\_{\lambda = constant}\\) -- ## For Linear Systems ### \\(Force = - \dfrac{\partial}{\partial x} (\dfrac{\lambda^2}{2 L(x)}) =\dfrac{ \lambda^2}{2 L(x)^2} (\dfrac{d L(x)}{dx}) \\) -- ### \\(Force = \dfrac{i^2}{2} \dfrac{d L(x)}{dx} \\) --- # Example: Previous Example ### Derive the force as a function of position
--- # Rail Gun Example:
###[Mini Coil Gun](http://www.youtube.com/watch?v=lIEgg7d8ZsU), [Large Rail Gun](http://www.youtube.com/watch?v=wa_vuX5_oAk), [Part-2](http://www.youtube.com/watch?v=rAwvnXYH488), [How it works](http://www.youtube.com/watch?v=PQNHsS-BNs4) ### [Reading assignment](http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-007-electromagnetic-energy-from-motors-to-lasers-spring-2011/lecture-notes/MIT6_007S11_lec14.pdf) --- # Summary ## Magnetic Circuit Tries -- - ## To reduce \\(W\_{magnetic}\\) if \\(\Phi\\) is constant -- - ## To maximize the inductance -- - ## To minimize the reluctance (\\(L=N^2/R\\)) --- ### How about rotational systems?
--- # What would happen in this circuit?
--- ## Mechanical Power & Energy: -- ## Linear Motion: -- \\(P = F v = F \dfrac{dx}{dt}\\) Watt -- ## Rotational: -- \\(P=T \omega = T \dfrac{d\theta}{dt} \\) Watt -- ## Linear Motion: \\(W = \int P dt = F x \\) Joule -- ## Rotational: \\(W= \int P dt = T \theta \\) Joule --- ## Linear Acceleration: -- ## \\(F = m a = m \dfrac{dv}{dt}\\) -- ## Rotational Acceleration: -- ## \\(T=J \dfrac{d\omega}{dt} \\) Watt ## J: Rotational Inertia (\\(kgm^2\\)) --- --- # Rotational Sytems: -- ## Remember in linear systems: ### \\(f = - \dfrac{\partial W\_{mag}(\Phi, x)}{\partial x} |\_{\Phi = constant}\\) --- # Rotational Sytems: ## Take the derivative wrt \\( \theta \\) not \\( x \\): -- ### \\(T = - \dfrac{\partial W\_{mag}(\Phi, \theta)}{\partial \theta} |\_{\Phi = constant}\\) #### [More information](http://engineering.nyu.edu/mechatronics/Control_Lab/Criag/Craig_RPI/SenActinMecha/EM_Motion_Fundamentals_2.pdf) --- # Rotational Sytems: ## Take the derivative wrt \\( \theta \\) not \\( x \\): -- ## \\(T = - \dfrac{1}{2}\Phi^2\dfrac{d R(\theta)}{d \theta} |\_{\Phi = constant}\\) ### or alternatively ## \\(T = \dfrac{1}{2}I^2\dfrac{d L(\theta)}{d \theta} |\_{i = constant}\\) --- # How can we achieve a constant rotation? -- ## Single Phase Reluctance Motor --
[Magnetorquer](https://blog.satsearch.co/2019-08-21-magnetorquers-an-overview-of-magnetic-torquer-products-available-on-the-global-marketplace-for-space.html) --- # Single Phase Reluctance Motor --
### [Magnetic Flux](https://www.youtube.com/watch?v=hDJnLt7cBTY), [Micro-stepping for higher accuracy](https://www.youtube.com/watch?v=eyqwLiowZiU) --- # Summary ## Magnetic Circuit Tries -- - ### To maximize the inductance, to minimize the reluctance (\\(L=N^2/R\\)) - ### To decrease the magnetic energy (increase co-energy) ## Rotational systems are similar to linear systems, but take the derivative of magnetic energy in terms of \\(\theta\\) instead of \\(x\\). --- # Multiply-Excited Systems ## What happens if there are more than one coils?
--- # Multiply-Excited Systems
## Electrical Energy = Magnetic Energy + Mechanical Energy -- ### \\(dW\_{mag} (\lambda\_1,\lambda\_2,\theta) = i\_1 d\lambda\_1 + i\_2d\lambda\_2 - T d\theta\\) --- # Mutual Inductance
### Write down the voltage equation of Inductor 2. --- # What is the stored energy in coil1? ### \\(W\_{mag1}= \dfrac{1}{2}i^2 L\\) -- \\(\quad \rightarrow\\) Not Correct! -- ### \\(dW\_{mag1}= i\_1 d\lambda\_1 \\) -- ### \\(dW\_{mag1}= i\_1 (L\_{11}di\_1 + L\_{12}di\_2) \\) --- # Total stored energy (coil1+coil2)? ## \\(dW\_{mag}= i\_1 d\lambda\_1 + i\_2d\lambda\_2 \\) -- ## Or it can be written as: -- ## \\(W\_{mag}=\int dW\_{mag} \\) ## \\(= \dfrac{1}{2} L\_{11}i\_1^2 + \dfrac{1}{2} L\_{22}i\_2^2 + M i\_1 i\_2\\) --- # Stored Energy in Matrix Form -- ### \\(W\_{mag}=\dfrac{1}{2} \begin{bmatrix} i\_1 & i\_2 \end{bmatrix} \begin{bmatrix} L\_{11} & M \\\ M & L\_{22} \end{bmatrix} \begin{bmatrix} i\_1 \\\ i\_2 \end{bmatrix}\\) -- ### Generalized case ### \\(W\_{mag} = \dfrac{1}{2} \mathbf{I}_t \mathbf{L} \mathbf{I}\\) ### An application of multiply excited systems: [Contactless Surgery](https://www.youtube.com/watch?v=ocE3MjF77Wk) [More information](http://robohub.org/minimally-invasive-eye-surgery-on-the-horizon-as-magnetically-guided-microbots-move-toward-clinical-trials/) --- # Torque in Multiply Excited Systems ## still depends on the derivative of \\(W\_{mag}\\) -- ### \\(T\_{mech}= \dfrac{1}{2} \dfrac{dL\_{11}}{d\theta}i\_1^2 + \dfrac{1}{2} \dfrac{dL\_{22}}{d\theta}i\_2^2\\) ### \\(\quad\quad\quad + \dfrac{dM}{d\theta} i\_1 i\_2\\) -- ### \\(T\_{mech} = \dfrac{1}{2} \mathbf{I}_t \dfrac{d\mathbf{L}}{d\theta} \mathbf{I}\\) --- # Combination with Mechanical Systems: -- ## Linear and Rotational Motion
Linear
Rotational
X: (m)
(θ): (radians)
v: Velocity (m/s)
ω: Angular Velocity (θ/s)
F: Force (N)
T: Torque (Nm)
m: Mass (kg)
J: Inertia (kgm^2)
F=m dv/dt
T=J dω/dt
--- # Dynamic Equations: Ideal Spring  --- # Dynamic Equations: Ideal Spring  ## \\(F = k (x - x_0)\\): No energy dissipation (~Ideal Inductor) --- # Dynamic Equations: Damping --
-- ### \\(F = B v = B \dfrac{dx}{dt}\\) : Dissipates energy (~Resistance) ### Overdamped, [underdamped](http://www.youtube.com/watch?v=j-zczJXSxnw) (similar to RLC circuits) --- # Dynamic Equations: Inertia ## \\(F=ma\\) -- ## or ## \\(F = m \dfrac{dv}{dt} = m \dfrac{d^2 x}{d^2 t} \\) --- # Dynamic Equations: Mechanical Side ## \\(f\_{mech} = M \dfrac{d^2 x}{d^2 t} + B \dfrac{dx}{dt} \\) ## \\(\quad \quad \quad + k (x-x\_0) + f\_{external} \\) --- # Bose's Active Suspension System
### [Bose suspension system](https://www.youtube.com/watch?v=3KPYIaks1UY), [Bose suspension will be mass produced](https://www.digitaltrends.com/cars/boses-revolutionary-adaptive-suspension-gets-a-reboot-for-2019/) --- # Bose Ride
### [Bose Ride](https://www.youtube.com/watch?v=D5hSwaMxNIA), [Bose ride presentation](https://www.youtube.com/watch?v=wQSNlJEdOZE), [Truck Driver comments-1](https://youtu.be/L1RyhBzS3PU?t=70), [Truck Driver comments-2](https://youtu.be/iFzdHUJOv1g?t=40) --- # Summary - ## Multiply excited systems still tries to minimize total stored magnetic energy - ## Derivative of self inductances and mutual inductance can work together or oppose each other. - ## Magnetic forces interact with the mechanical systems and generate a system response --- ## You can download this presentation from: [keysan.me/ee361](http://keysan.me/ee361)