Lecture Hours
In the lectures we will be using a flipped classroom concept. The students are required to prepare ahead for the lectures (by watching course videos, reading handouts etc).
Course Assistants
- Ogün Altun ogun@metu.edu.tr (Coordinator, Office: C-114)
Grading:
- 1 Midterm: 15%
- Laboratory: 20% (Attending to all lab sessions is compulsory)
- Homeworks: 20% (+some bonus for good homeworks)
- Final: 25%
- Term Project: %15 (+some bonus for good projects)
- Participation: 5% (quizzes, pop-up questions, active participation)
Important Note: Any of the following actions will result in NA grade:
- Not submitting at least three homeworks
- Not submitting a laboratory report
- Not submitting the term project report
- Not attending to the final exam
Presentations:
In 2024, the syllabus of EE463 is considerably modified, the tentative schedule is as follows:
Presentations for 2024
Presentations will be added to keysan.me/ee463 weekly and lecture videos will be added to Odtuclass and Youtube (please also use the other sources given below):
Tentative Outline
- Week#1 : Info about the course
- Week#1 : Introduction
- Week#2: Power Electronics Basics
- Week#2: Single Phase Diode Rectifiers
- Week#3: Three Phase Diode Rectifiers
- Week#4: Power Semiconductor Devices
- Week#5: Review of DC/DC Converters
- Week#6: Regulated Power Supplies
- Week#8: Magnetic Design for Power Electronics
- Week#10: Half/Full Bridge Converters
- Week#11: Thermal Design
- Week#12: Snubbers
- Week#12: Harmonics, Filters
- Week#14: Isolation, Gate Drivers
Presentations for 2023
- Week#1 : Info about the course
- Week#1 : Introduction
- Week#2: Power Electronics Basics
- Week#2: Single Phase Diode Rectifiers
- Week#4: Three Phase Diode Rectifiers
- Week#5: Power Semiconductor Devices
- Week#6: Single Phase Controlled Rectifiers
- Week#7: Three Phase Controlled Rectifiers
- Week#8: Other Converter Topologies
- Week#9: Introduction to DC/DC Converters
- Week#10: Other DC/DC converters
- Week#11: Thermal Design
- Week#12: Snubbers
- Week#12: Harmonics, Filters
- Week#14: Isolation, Gate Drivers
Projects:
Projects will be announced from the ee463 GitHub Page of the course. Please follow it regularly.
Brief Info:
EE463 and EE464 are the two core courses for power electronics and electric machines option. In these courses, you will learn about basics of power electronic topologies, components and control techniques. In the first semester we will focus on AC-DC converters (rectifiers), whereas in the second semester it will be mainly about DC-DC converters and inverters. You will find chance to design and implement fundamental circuit topologies and get understanding of other design factors such as selection of switches, passive components within electrical and thermal constraints. There will a hardware project to implement.
Important Notes:
In this course I will apply learning by doing, thus I expect (and encourage) you to actively participate to the lectures. Here are the important points:
- There are no stupid questions.
- Even if there is, asking a stupid question doesn’t mean that you are stupid.
- Studying is an activity of students, not of lecturers.
Course Objectives:
At the end of course you will be able to:
- Understand the fundamental principles of power electronics topologies.
- Analyze and design controlled and uncontrolled AC/DC rectifiers (1ph and 3ph)
- Select commercial power switches and passive components for various applications.
- Evaluate and compare various options for power electronic topologies
- Use a few power electronic software (e.g. Simulink, Altium Designer,KiCad, Autodesk Fusion 360 etc.)
- Prepare design reports and use version control system (GitHub) to build your online portfolio.
- Design and implement a hardware project.
Required Background
EE361 and EE212 are prerequisite for this course, and I strongly advise you to review the topics covered in these courses and the circuit classes in the very early weeks.
Assuming you are getting the core courses from the power electronics and electric machines option(EE462, EE463, EE464), you will need at least three more courses. If you are planning to continue your career in power engineering area I advise you the following courses (in the order of preference):
- EE406 Laboratory of Feedback Control Systems
- EE498 Control System Design and Simulation
- EE402 Discrete Time Systems
- EE471 Power Sytem Analysis-I
- EE447 Introduction to Microprocessors
- EE407 Process Control
Textbooks & References:
These books are available in METU Bookstore: ODTUDEN. I suggest you to get at least one of these books, not only for this course but also for as a reference in your professional career.
- Power Electronics: Converters, Applications, and Design, N. Mohan, T. Undeland, W. Robbins, Wiley
- Power Electronics, Daniel W. Hart, Mc Graw Hill
- Cyril W. Lander, Power Electronics, McGraw-Hill (optional for detailed info on rectifiers)
Useful Links:
- MIT Power Electronics Lecture Notes
- NPTEL Power Electronics Course
- University of Colorado Introduction to Power Electronics
- YouTube, Power Electronics by Ned Mohan
- YouTube, Fundamentals of Power Electronics by Katherine Kim
- YouTube, Power Electronics by Dr. Ferdowsi
Useful Software Tutorials
Here are some to get you started. If you think a link should be here, just let me know.
MATLAB/Simulink
Altium Designer
KiCad
- KiCad is an open source PCB design software which is offered in their website for free.
- Introduction to KiCad
- Quick Start to KiCad
- Video Tutorials
Autodesk Fusion 360
- Autodesk Fusion 360 education license offers 1 year free usage.
- Introduction to Autodesk Fusion 360
- Documentation
- Video Tutorials
- Thermal Simulation with Autodesk Fusion 360
PSIM
Notes on Homeworks
-
In this course you will complete several short homeworks, and one hardware project. Homeworks will be performed in groups (2 people). However, the groups will be assigned randomly, and will be shuffled for each project. You will be able to choose your group partners only for the hardware project.
-
I would like you to use a version control system for your project. Please check keysan.me/okst/ for details.
-
You will submit your projects using GitHub, so please open an account (preferably using your real name, as it will be your online portfolio when you graduated), and complete a few tutorials and learn the basics as soon as possible.
-
You will not only submit the latest version of your projects, but I would like to see the intermediate stages, and you’ll be also graded with number of commits, so please start working on the projects in the early days.
-
In the course you will learn to use Simulink, KiCad, Altium Designer, Autodesk Fusion 360. Please set up these software and start learning them as soon as possible.
Homeworks Grading
-
Number of Commits: 15%: The number of edits of your project files as seen from the contributors list. For example, if you start making your project in the last few days, you’ll get no credit. If you start early and continue editing your files, you’ll get full credit. The project topics are not easy, so this is a way to encourage you to start early and work regularly.
-
Level of Information: 60%: The detail level of your designs (see requirements above), and the accuracy of your calculations.
-
Report Quality: 25%: Text explaining your design decisions, quality of your figures, citing relevant studies and your conclusion section.
Frequently Asked Questions
-
Why can’t I choose my partner for the homeworks? Next year you will graduate and start working in companies or in research institutes. However, in your professional life you will not be able to choose your colleagues, and you will have to work with many people with different personal characters and backgrounds. Unfortunately, team working is a neglected aspect in our department and I hope in this course you will improve your competence to work with different people. Furthermore, once you begin your professional career you will see that your personal network is one of your valuable assets, so please consider these projects as a chance to have connection with 5-6 extra people, which all will be working in different companies in the following years.
-
But, there is my high school friend, whom I partnered with the all laboratories in the past so far… Then, it is you that needs to meet with new people most.
-
But, I do all of the work, and my partner does not help at all. It is not fair! That’s why you have to use version control system. Each student will be graded separately based on their contributions and number of commits. If one of partners did not contribute at all, he/she will get zero.
-
What happens if I don’t submit these homeworks? If you don’t submit three homeworks or more, you will get NA.